Combinatorial Analysis (MIT Fall 2021) Instructor: Felix Gotti

Problem Set 5 (Solutions by Daniil Kliuev)

Problem 1 Prove that a connected graph G is a tree if and only if any family of
pairwise intersecting (that is, vertex intersecting) paths Py, ..., Py in G have a common
vertex.

Solution. Suppose that G is not a tree. Then G contains a cycle v - - - v,,, where m > 3.
Then paths P, = vyvy, P, = v,v9 and P3 = vy ...v, are pairwise intersecting but do
not have a common vertex.

Suppose that G is a tree, P, ..., P, are pairwise intersecting paths. We will provide
two proofs that P, ..., P, have a common vertex.

1. Suppose that G contains n vertices. We will prove the claim by induction on n.

Base case n = 1. In this case P, ..., P, coincide with G, the only vertex of G is
their intersection.

Induction step n — 1 — n. Since G is a tree it has a leaf v. Then G' = G\ {v} is
a tree on n — 1 vertices and P/ = P, \ {v}, Py = P, \ {v},..., Pl = P, \ {v} are
(possibly empty) paths.

If P|,..., P are pairwise intersecting then Pj,..., P, have a common vertex
u € V(G"). Hence Py, ..., P, have a common vertex u.

Suppose that P/, ..., P/ are not pairwise intersecting. Without loss of generality
we may assume that P| and Pj do not intersect. We have P/NP) = (PiNP)\{v}.
Since P/ N Py is empty and P; N P, is nonempty we have Py N P, = {v}. Let w be
the only neighbor of v in G. From P, N P, = {v} we deduce that P, or P, does
not contain w. It follows that P, or P, consists of one vertex v. Since P, ..., P
are pairwise intersecting they all contain v.

2. Cases k = 1,2 are tautological, so we assume k& > 3. We will prove the claim by
induction on k.

Let k = 3. We will prove the claim by contradiction. Suppose that P, = vy - - - v.
Since Py, P, P3 are pairwise intersecting there exists v; € P», v; € P;. Without
loss of generality we may assume that ¢ < j. Let k& be the maximal number such
that v, € Py, k < j. If vy belongs to P3 then vy is a common vertex of Py, Py, Ps.
Hence vy, does not belong to Ps. In particular, vj, # v;, hence k < j.

By definition of k viy; does not belong to P,. Vertex vy does not belong to Ps,
vertex vgy1 does not belong to P, hence the edge e = vpvi11 does not belong to
P, or P;. Therefore P, \ {e} = P, P3\ {e} = P; are still connected. On the
other hand, since G is a tree, G’ = G \ {e} has two connected components and
Uk, Ug41 are in different connected components of G’. The path from wvyyq to v,
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still exists, hence they are in the same connected component. It follows that vy
and v; are in different connected components. Since vy € P», v; € P3 paths P,
and P; are in different connected components of G’. It follows that P and P; do
not intersect, a contradiction.

Let k£ > 3. Using the claim for £k — 1 we get a common vertex u of P, ..., P, and
a common vertex v of Py, Py, Py, ..., P,. Let P’ be a unique path from u to v in
G. Paths P, ..., P, are connected and contain u, v, hence they contain a unique

path between them P’.

P, and P; intersect by assumption, P; and P’ intersect in v, P, and P’ intersect
in u. Using the claim for kK = 3 and paths P, P, P’ we deduce that Pi, P, P’
have common vertex w. Since P, ..., P, contain P', w is a common vertex of
P, ... P

O

Problem 2 Let Ay, Ay, A3 be nonempty mutually-disjoint sets with |A;| = n; for every
i € [3]. The complete tripartite graph on A; U Ay U As, denoted by Ky, nyny, 1S the
graph G with V(G) = A; U Ay U A3 having an edge between two vertices if and only if
these vertices are not in the same set A;. For m,n € N, find a formula for the number
of spanning trees of the complete tripartite graph K, m.n-

Solution. Assume for convenience that A; = [m], Ay = [2m]\ [m], A3 = [2m+n]\ [2m].
Let M be the Laplacian matrix of G. We have M;; = —1 when 4,j belong to
different parts of the graph. We have M;; = m 4+ n when i € [2m] and M;; = 2m when
i € As. When 7 # j belong to the same part we have M;; = 0.
We will compute the number of spanning trees using Matrix tree theorem: it is
equal t02m1+n)\1 “+ Aoman—1, where A1, ... Agyin_1 are all nonzero eiganvalues of M.
Let I be the unit matrix. Consider M — (m + n)l. Its first m rows equal to
0,...,0,—1,...,—1), m zeroes and m + n minus ones. Its rows from m + 1 to 2m
equal to (—1,...,—1,0,...,0,—1,...,—1), m minus ones, then m zeroes, then n minus
ones. We see that the kernel of this matrix has dimension at least 2m — 2: any vector
(U1« ooy Uy U1y« +, U2, 0, .., 0) with vy ++ - -+ 0, = Vi1 ++ - -+ 09, = 0 belongs to
its kernel. We deduce that M has eigenvalue m + n with multiplicity at least 2m — 2.
Consider vector v = (1,...,1,—1,...,—1,0,...,0), m ones, m minus ones, n zeroes.
We have (M —(m+n)I)v = mv, hence v is an eigenvector of M with eigenvalue 2m+n.
Consider the matrix M — 2ml. Its rows 2m + 1,...,2m + n are equal to the row
vector (—1,...,—1,0,...,0), 2m minus ones, n zeroes. Similarly to above this means
that M — 2ml has kernel of dimension at least n — 1. Hence 2m is an eigenvalue of M
with multiplicity at least n — 1.
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Zero is always an eigenvalue of Laplacian, the corresponding vector is (1,1,...,1).

We found 2m —2+1+n—141=2m +n — 1 eigenvalues of M. We compute the
trace of M to find the last one. We have tr M = 2m(m +n) + n - 2m = 2m? + 4mn.
The sum of eigenvalues we already found is (2m —2)(m+n)+ (2m+n)+2m(n—1) =
2m? + 2mn — 2m — 2n + 2m +n + 2mn — 2m = 2m? + 4mn — 2m — n. So the last
eigenvalue is 2m + n.

So the number of spanning trees is

1
2m+n

(m +n)?*™2(2m +n)*(2m)" " = (2m + n)(m + n)*™2(2m)" ",

O

Problem 3 For every n € N, let t,, be the number of trees on [n]. Without using
Cayley’s theorem (that is, t, = n""2), prove that

n—1
S (e mr
k:l

Solution. We multiply by 2(n — 1) to get 2(n — 1)t, 1 ( )ktk( — k)t

The left-hand side counts the number of pairs (T ¢), where T is a tree and € is
an edge e = uv of T plus a choice of orientation v — v. Indeed, there are ¢, trees,
n — 1 edges in each of them, 2 ways to orient an edge.

We claim that the right-hand side counts the number of pairs (77, 75) of rooted
trees such that V(T1) NV (Tz) = 0, V(T1) UV (T2) = [n]. Let k be the size of T;. Then
there are (}) ways to choose V(T1). After that V(T3) = [n]\ V(T1). There are t;, ways
to construct a tree on V(T}) and t,_ ways to construct a tree on V(73). It remains
to choose two roots: k ways for 77, n — k ways for T,. This proves the claim.

Now we construct a bijection between the two sets. Let (T, €) be a tree with an
oriented edge e = u — v. Graph T\ {e} is a forest with two connected components.
Let T7 be the connected component that contains u, T5 be the connected component
that contains v. These a rooted trees with roots u,v. On the other hand, if 77,75, are
a pair of rooted trees with roots u, v, we can obtain a tree 7' = (77 U T3) U {uv} with
an oriented edge u — v. We see that these two maps are inverse two each other.

Since the set of pairs (T, e ) and the set of pairs (71,7%) have the same size we get
2(TL — 1) k 1 ( )k‘tk( k?)tn_k. ]

M

Problem 4 Let T be a tree on the set of vertices [m|. For n € N with n > m, in how
many ways can we extend T to a tree on [n|?
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Solution. Let S be a tree on [n] that extends 7. We will construct a list of n —m
numbers repeating the following process n — m times: take the leaf with the largest
value, delete it, add the value of its parent to the list. Clearly, at each step, we are
left with a tree. We claim that at each step there is a leaf with value greater than m.
Indeed, if there are m + k vertices and no leaves outside T" then there are m — 1 edge
inside T" and at least 2k edges outside T', giving at least m+2k—1 > m+k—1 edges, a
contradiction. Hence this process deletes vertices from [n]\ [m] in some order and gives
back the initial tree 1. Thus, at each step, we are left with a tree that is obtained as
an extension of 1. We also note that at the last step the parent of the corresponding
leaf belongs to [m], whence the last number in the obtained list belongs to [m]. Then
we have constructed a map ¢ from the set .7 of trees on [n] extending 7" to the set £
of lists dy, ..., dy_, with dy, ..., dy_mi1 € [n]\ [m] and d,,_,,, € [m].

Now we show that ¢: .7 — £ is injective. Let D be a list in .%; that is D =
di,...,dp_m with dy, ..., dp_my1 € [n]\ [m] and d,_,, € [m]. By construction, the
degree of vertex ¢ > m is the number of times it appears in D plus one. Hence we
know what are the leaves: vertices that do not appear in D. So we know what was the
first deleted edge: this was an edge between d; and the maximum number [y € [n]\ [m]
that is not in D. Repeating this gives the second deleted edge: this is an edge between
dy and maximal number not in {ly,ds, ...,d, ,,}. Repeating this process we get back
the sequence of deleted edges. Hence there is a unique tree S extending 7" such that
p(S) = D.

Let us proceed to argue that ¢ is surjective. To do so, fix D € .Z. We define the
list of leaves Iy, ..., 1, ., as before: [; is the maximum element of [n]\ [m] that is not
in D, then [y is the maximum element of [n] \ [m] that is not in {ly,ds, ..., d, .}, and
so on until we get the last leaf [, _,, of our list, which is the unique element of [n]\ [m]
that is not in {ly,...,lh—m—1,dn—m}. We will add edges to T" one by one starting with
dy—mlp—m. By construction {ly,...,lx} does not intersect with {dy,...,d,_,,} for any
1 < k < n—m. Hence when we add a new edge lydy to TU{l,_mdp_m U -U{lpr1dk11}
we use a new vertex [, and do not create a cycle. It follows that S = TU{l,,_dp_m}U
<~ U{lidy} is a tree.

Hence we conclude that ¢ is a bijection and, therefore, we can extend 7' to a tree
on [n] in |T| = |Z| = mn" ™" ways. O

Problem 5 Let G be a simple graph, and let T and T' be two spanning trees of G.
Show that for each e € E(T), we can choose ¢ € E(T") such that (T \ {e})U{e'} and
(T"\ {€'}) U{e} are both spanning trees of G.

Solution. In the case when e € E(T") we choose € = e, so we assume that e does not
belong to T". In this case T" U {e} contains a cycle C. Since T" does not have cycles
this cycle should contain e. Let C' = ug. .. u,, € = ugy,.
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Graph T'\ {e} is a forest with two connected components and wyg, u,, are in different
connected components. Hence we can find ¢ such that u; and wu;,; are in different
connected components. Let € = u;u;, 1. All edges of C' except e belong to T”, hence €
belongs to T".

Since ¢’ is an edge between two different connected components of the forest 7'\ {e}
the graph T\ {e} U {€'} is a tree.

Since e, €’ belong to the same cycle C deleting €’ from 7" U {e} leaves it connected:
instead of ¢/ we can use u; - - - upug - - - u;—; in a path that contains ¢’. Hence T"U{e}\{¢'}
is a connected graph with |[V(G)| — 1 = |V(1")] — 1 edges, so it is a tree. O

Problem 6 Let Vi, V5, and V3 be three mutually disjoint nonempty sets satisfying
Vi| = |Va| = |V3| = n, and let G be a simple graph with V(G) = V3 U Vo U Vs, Assume
that every v € V; is adjacent to exactly n + 1 vertices in V(G) \ Vi (v may also be ad-
jacent to some vertices in V;) for every i € [3]. Prove that there ezist vy, vq,v3 € V(G)
with v; € V; for every i € [3] such that vivavs is a cycle in G.

Solution. For 1 < 1,5 < 3,i# j, v € V; we denote by d;(v) the number of neighbors
of vin Vj.

Consider numbers d;(v) for all triples 4, j, v, let k be their maximum. Without loss
of generality we may assume that k = ds(v), where v € V;.

We have ds(v) + d3(v) = n+ 1 and dy(v) < |Va| = n. Hence d3(v) > 1. So there
exists a vertex w € V3 connected to v. In the case when dy(w) + d2(v) > n we can find
a common neighbor u of v, w by pigeonhole principle. Hence uvw is a cycle.

So we assume that dy(w) + da(v) < n. Since do(w) + di(w) = n + 1 we get
di(w) =n+1—dy(w) > 1+4dy(v) > k+ 1, a contradiction with the definition of k. O

Problem 7 Let G be a simple graph in which every vertex has degree 3. Prove that G
has a perfect matching if and only if G can be decomposed into paths of length 3 each.

Solution. Suppose that G can be decomposed into paths of length 3 each. We take
middle edge from each path.

We claim that middle edges form different paths do not have a vertex in common.
Assume that this is not the case.let e; and ey be middle edges of paths P, and P,
that have vertex v in common. Then the degree of v is at least 4: there are two edges
incident to v in P, and two edges incident to v in P,. This contradiction proves the
claim.

Since different edges do not have common vertices we obtain a matching. Let n be
the number of vertices in GG. Then there are 37” edges in G. It follows that there are
paths of length 3. Hence there are § middle edges, so this matching in perfect.
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Suppose that G has a perfect matching M. Then in graph G \ M the degree of
each vertex is two. Hence G \ M is a union of cycles. For each vertex we will choose
an edge incident to it as follows. Write each cycle C' as C' = vy - - - v, and choose for
vertex v; edge v;v;11. We note that to different vertices correspond different edges.

We construct paths of length 3 as follows. Let e = uv be an element of M. To
u, v correspond edges e,,e, in G\ M. Edges e,, e, e, form a path of length 3. Since
to each vertex corresponds its own edge these paths do not intersect. There are % of

2
these paths, hence E(G) is a union of these paths. 0

Problem 8 Let k,n € N such that k < n/2. Let G be a bipartite graph with parts V
and W satisfying the following condition:

o V is the set of k-subsets of [n] and W is the set of (k + 1)-subsets of [n|, and

o there is an edge between S € V and T'e€ W if and only if S C T.
Prove that V' has a perfect matching into W

1. (0.5 pts) by using Hall’s theorem, and
2. (0.5 pts) by explicitly finding a perfect matching.

Solution.

1. We note that the degree of each S € V' equals to n — k and the degree of each
T € W equals to k + 1. Let A be a subset of V, N(A) its neighborhood. There
are (n — k)| A| edges going from A and (k+ 1)|N(A)| going from N(A). Since all
edges from A go to N(A) we have (n — k)[A| < (k+1)|N(A)|. From k < § we
deduce that (k+ 1) < n — k. Hence (k+ 1)|N(A)| < (n—k)||[N(A)|. It follows
that (n—k)|A| < (n—k)|N(A)|, so |A] < |N(A)|. Since this holds for any subset
A of V the conditions of Hall’'s theorem are satisfied and there exists a perfect
matching from V to W.

2. We will modify the construction given in the StackExchange forum:

https://math.stackexchange.com/questions/126065/
for-kn-2-construct-a-bijection-f-from-k-subsets-of-n-to—n-k-subse


https://math.stackexchange.com/questions/126065/for-kn-2-construct-a-bijection-f-from-k-subsets-of-n-to-n-k-subse
https://math.stackexchange.com/questions/126065/for-kn-2-construct-a-bijection-f-from-k-subsets-of-n-to-n-k-subse
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We construct a sequence of parentheses from a set S as follows: the i-th paren-
thesis is opening if ¢ does not belong to S and closing if i belongs to S. Condition
on k implies that there are more opening parentheses than closing. We match
parentheses as follows: we go from right to left and match each closing parenthesis
to the nearest non-matched opening parenthesis to the left if such exists.

In this way some parentheses will be matched and some will be unmatched. All
unmatched open parentheses are to the right of unmatched close parentheses or
some of them would be matched. We take leftmost unmatched open parenthesis
and change it to close parenthesis. Then we convert it to the set 7. We have
S C T by construction.

It remains to prove that for S; # Sy we have Ty # T,. Suppose that there
exist S; # Sy such that T} = Ty = T. By construction S; and S, differ in
two elements 7, 7. We may assume that ¢ < j. On the level of parentheses one
of 51,55 looks like ---(---)---, the other looks like ---)---(---. And T look
like ---)---)---. Without loss of generality let S; = ---)---(---. Since j-th
parenthesis was changed it was the leftmost unmatched opening parenthesis. It
follows that all opening parentheses on places 1,...,j — 1 are matched to closing
parentheses.

Consider Sy = -+ (--+)---. Start matching parentheses. Going from the right-
most parenthesis to the j 4+ 1-th parenthesis gives the same set of unmatched
parentheses as in S; and two options for matched parentheses: either they are
the same as in S or they contain i-th parenthesis. In the second case i-th paren-
thesis is matched, hence Sy does not correspond to 7. So we assume that we
have the same set of matched opening parentheses as in .5;.

Since all opening parentheses on places ¢ + 1,...,7 — 1 were matched to closing
parentheses in S; the number of closing parentheses in {i+1,...,j—1} is greater
or equal than the number of yet-unmatched opening parentheses in {i+1,...,j—
1}. Hence in Sy there are more closing parentheses in {i + 1,...,j} than yet-
unmatched opening parentheses. Therefore the parenthesis on place ¢ will be
matched to some closing parenthesis by construction. Hence i-th parenthesis
cannot be the leftmost unmatched parenthesis, so T" does not correspond to Ss,
a contradiction.

O



