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Problem Set 5 (Solutions by Daniil Kliuev)

Problem 1 Prove that a connected graph G is a tree if and only if any family of
pairwise intersecting (that is, vertex intersecting) paths P1, . . . , Pk in G have a common
vertex.

Solution. Suppose that G is not a tree. Then G contains a cycle v0 · · · vm, wherem ≥ 3.
Then paths P1 = v0v1, P2 = vnv0 and P3 = v1 . . . vn are pairwise intersecting but do
not have a common vertex.

Suppose that G is a tree, P1, . . . , Pk are pairwise intersecting paths. We will provide
two proofs that P1, . . . , Pk have a common vertex.

1. Suppose that G contains n vertices. We will prove the claim by induction on n.

Base case n = 1. In this case P1, . . . , Pk coincide with G, the only vertex of G is
their intersection.

Induction step n− 1 → n. Since G is a tree it has a leaf v. Then G′ = G \ {v} is
a tree on n− 1 vertices and P ′

1 = P1 \ {v}, P ′
2 = P2 \ {v}, . . . , P ′

k = Pk \ {v} are
(possibly empty) paths.

If P ′
1, . . . , P

′
k are pairwise intersecting then P ′

1, . . . , P
′
k have a common vertex

u ∈ V (G′). Hence P1, . . . , Pk have a common vertex u.

Suppose that P ′
1, . . . , P

′
k are not pairwise intersecting. Without loss of generality

we may assume that P ′
1 and P ′

2 do not intersect. We have P ′
1∩P ′

2 = (P1∩P2)\{v}.
Since P ′

1∩P ′
2 is empty and P1∩P2 is nonempty we have P1∩P2 = {v}. Let w be

the only neighbor of v in G. From P1 ∩ P2 = {v} we deduce that P1 or P2 does
not contain w. It follows that P1 or P2 consists of one vertex v. Since P1, . . . , Pk

are pairwise intersecting they all contain v.

2. Cases k = 1, 2 are tautological, so we assume k ≥ 3. We will prove the claim by
induction on k.

Let k = 3. We will prove the claim by contradiction. Suppose that P1 = v1 · · · vk.
Since P1, P2, P3 are pairwise intersecting there exists vi ∈ P2, vj ∈ P3. Without
loss of generality we may assume that i ≤ j. Let k be the maximal number such
that vk ∈ P2, k ≤ j. If vk belongs to P3 then vk is a common vertex of P1, P2, P3.
Hence vk does not belong to P3. In particular, vk ̸= vj, hence k < j.

By definition of k vk+1 does not belong to P2. Vertex vk does not belong to P3,
vertex vk+1 does not belong to P2, hence the edge e = vkvk+1 does not belong to
P2 or P3. Therefore P2 \ {e} = P2, P3 \ {e} = P3 are still connected. On the
other hand, since G is a tree, G′ = G \ {e} has two connected components and
vk, vk+1 are in different connected components of G′. The path from vk+1 to vj
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still exists, hence they are in the same connected component. It follows that vk
and vj are in different connected components. Since vk ∈ P2, vj ∈ P3 paths P2

and P3 are in different connected components of G′. It follows that P2 and P3 do
not intersect, a contradiction.

Let k > 3. Using the claim for k− 1 we get a common vertex u of P2, . . . , Pk and
a common vertex v of P1, P3, P4, . . . , Pk. Let P

′ be a unique path from u to v in
G. Paths P3, . . . , Pk are connected and contain u, v, hence they contain a unique
path between them P ′.

P1 and P2 intersect by assumption, P1 and P ′ intersect in v, P2 and P ′ intersect
in u. Using the claim for k = 3 and paths P1, P2, P

′ we deduce that P1, P2, P
′

have common vertex w. Since P3, . . . , Pk contain P ′, w is a common vertex of
P1, . . . , Pk.

□

Problem 2 Let A1, A2, A3 be nonempty mutually-disjoint sets with |Ai| = ni for every
i ∈ [3]. The complete tripartite graph on A1 ∪A2 ∪A3, denoted by Kn1,n2,n3, is the
graph G with V (G) = A1 ∪ A2 ∪ A3 having an edge between two vertices if and only if
these vertices are not in the same set Ai. For m,n ∈ N, find a formula for the number
of spanning trees of the complete tripartite graph Km,m,n.

Solution. Assume for convenience that A1 = [m], A2 = [2m]\ [m], A3 = [2m+n]\ [2m].
Let M be the Laplacian matrix of G. We have Mij = −1 when i, j belong to

different parts of the graph. We have Mii = m+ n when i ∈ [2m] and Mii = 2m when
i ∈ A3. When i ̸= j belong to the same part we have Mij = 0.

We will compute the number of spanning trees using Matrix tree theorem: it is
equal to 1

2m+n
λ1 · · ·λ2m+n−1, where λ1, . . . , λ2m+n−1 are all nonzero eiganvalues of M .

Let I be the unit matrix. Consider M − (m + n)I. Its first m rows equal to
(0, . . . , 0,−1, . . . ,−1), m zeroes and m + n minus ones. Its rows from m + 1 to 2m
equal to (−1, . . . ,−1, 0, . . . , 0,−1, . . . ,−1), m minus ones, then m zeroes, then n minus
ones. We see that the kernel of this matrix has dimension at least 2m− 2: any vector
(v1, . . . , vm, vm+1, . . . , v2m, 0, . . . , 0) with v1+ · · ·+vm = vm+1+ · · ·+v2m = 0 belongs to
its kernel. We deduce that M has eigenvalue m+ n with multiplicity at least 2m− 2.

Consider vector v = (1, . . . , 1,−1, . . . ,−1, 0, . . . , 0), m ones, mminus ones, n zeroes.
We have (M−(m+n)I)v = mv, hence v is an eigenvector of M with eigenvalue 2m+n.

Consider the matrix M − 2mI. Its rows 2m + 1, . . . , 2m + n are equal to the row
vector (−1, . . . ,−1, 0, . . . , 0), 2m minus ones, n zeroes. Similarly to above this means
that M − 2mI has kernel of dimension at least n− 1. Hence 2m is an eigenvalue of M
with multiplicity at least n− 1.



Combinatorial Analysis (MIT Fall 2021) Instructor: Felix Gotti

Zero is always an eigenvalue of Laplacian, the corresponding vector is (1, 1, . . . , 1).
We found 2m− 2 + 1+ n− 1 + 1 = 2m+ n− 1 eigenvalues of M . We compute the

trace of M to find the last one. We have trM = 2m(m + n) + n · 2m = 2m2 + 4mn.
The sum of eigenvalues we already found is (2m− 2)(m+n)+ (2m+n)+2m(n− 1) =
2m2 + 2mn − 2m − 2n + 2m + n + 2mn − 2m = 2m2 + 4mn − 2m − n. So the last
eigenvalue is 2m+ n.

So the number of spanning trees is

1

2m+ n
(m+ n)2m−2(2m+ n)2(2m)n−1 = (2m+ n)(m+ n)2m−2(2m)n−1.

□

Problem 3 For every n ∈ N, let tn be the number of trees on [n]. Without using
Cayley’s theorem (that is, tn = nn−2), prove that

tn =
1

2(n− 1)

n−1∑
k=1

(
n

k

)
ktk(n− k)tn−k.

Solution. We multiply by 2(n− 1) to get 2(n− 1)tn =
∑n−1

k=1

(
n
k

)
ktk(n− k)tn−k.

The left-hand side counts the number of pairs (T,−→e ), where T is a tree and −→e is
an edge e = uv of T plus a choice of orientation u → v. Indeed, there are tn trees,
n− 1 edges in each of them, 2 ways to orient an edge.

We claim that the right-hand side counts the number of pairs (T1, T2) of rooted
trees such that V (T1)∩ V (T2) = ∅, V (T1)∪ V (T2) = [n]. Let k be the size of T1. Then
there are

(
n
k

)
ways to choose V (T1). After that V (T2) = [n] \ V (T1). There are tk ways

to construct a tree on V (T1) and tn−k ways to construct a tree on V (T2). It remains
to choose two roots: k ways for T1, n− k ways for T2. This proves the claim.

Now we construct a bijection between the two sets. Let (T,−→e ) be a tree with an
oriented edge e = u → v. Graph T \ {e} is a forest with two connected components.
Let T1 be the connected component that contains u, T2 be the connected component
that contains v. These a rooted trees with roots u, v. On the other hand, if T1, T2 are
a pair of rooted trees with roots u, v, we can obtain a tree T = (T1 ∪ T2) ∪ {uv} with
an oriented edge u → v. We see that these two maps are inverse two each other.

Since the set of pairs (T,−→e ) and the set of pairs (T1, T2) have the same size we get
2(n− 1)tn =

∑n−1
k=1

(
n
k

)
ktk(n− k)tn−k. □

Problem 4 Let T be a tree on the set of vertices [m]. For n ∈ N with n > m, in how
many ways can we extend T to a tree on [n]?
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Solution. Let S be a tree on [n] that extends T . We will construct a list of n − m
numbers repeating the following process n − m times: take the leaf with the largest
value, delete it, add the value of its parent to the list. Clearly, at each step, we are
left with a tree. We claim that at each step there is a leaf with value greater than m.
Indeed, if there are m+ k vertices and no leaves outside T then there are m− 1 edge
inside T and at least 2k edges outside T , giving at least m+2k−1 > m+k−1 edges, a
contradiction. Hence this process deletes vertices from [n]\ [m] in some order and gives
back the initial tree T . Thus, at each step, we are left with a tree that is obtained as
an extension of T . We also note that at the last step the parent of the corresponding
leaf belongs to [m], whence the last number in the obtained list belongs to [m]. Then
we have constructed a map φ from the set T of trees on [n] extending T to the set L
of lists d1, . . . , dn−m with d1, . . . , dn−m+1 ∈ [n] \ [m] and dn−m ∈ [m].

Now we show that φ : T → L is injective. Let D be a list in L ; that is D =
d1, . . . , dn−m with d1, . . . , dn−m+1 ∈ [n] \ [m] and dn−m ∈ [m]. By construction, the
degree of vertex i > m is the number of times it appears in D plus one. Hence we
know what are the leaves: vertices that do not appear in D. So we know what was the
first deleted edge: this was an edge between d1 and the maximum number l1 ∈ [n]\ [m]
that is not in D. Repeating this gives the second deleted edge: this is an edge between
d2 and maximal number not in {l1, d2, . . . , dn−m}. Repeating this process we get back
the sequence of deleted edges. Hence there is a unique tree S extending T such that
φ(S) = D.

Let us proceed to argue that φ is surjective. To do so, fix D ∈ L . We define the
list of leaves l1, . . . , ln−m as before: l1 is the maximum element of [n] \ [m] that is not
in D, then l2 is the maximum element of [n] \ [m] that is not in {l1, d2, . . . , dn−m}, and
so on until we get the last leaf ln−m of our list, which is the unique element of [n] \ [m]
that is not in {l1, . . . , ln−m−1, dn−m}. We will add edges to T one by one starting with
dn−mln−m. By construction {l1, . . . , lk} does not intersect with {dk, . . . , dn−m} for any
1 ≤ k ≤ n−m. Hence when we add a new edge lkdk to T∪{ln−mdn−m}∪· · ·∪{lk+1dk+1}
we use a new vertex lk and do not create a cycle. It follows that S = T ∪{ln−mdn−m}∪
· · · ∪ {l1d1} is a tree.

Hence we conclude that φ is a bijection and, therefore, we can extend T to a tree
on [n] in |T | = |L | = mnn−m−1 ways. □

Problem 5 Let G be a simple graph, and let T and T ′ be two spanning trees of G.
Show that for each e ∈ E(T ), we can choose e′ ∈ E(T ′) such that (T \ {e}) ∪ {e′} and
(T ′ \ {e′}) ∪ {e} are both spanning trees of G.

Solution. In the case when e ∈ E(T ′) we choose e′ = e, so we assume that e does not
belong to T ′. In this case T ′ ∪ {e} contains a cycle C. Since T ′ does not have cycles
this cycle should contain e. Let C = u0 . . . un, e = u0un.
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Graph T \{e} is a forest with two connected components and u0, un are in different
connected components. Hence we can find i such that ui and ui+1 are in different
connected components. Let e′ = uiui+1. All edges of C except e belong to T ′, hence e′

belongs to T ′.
Since e′ is an edge between two different connected components of the forest T \{e}

the graph T \ {e} ∪ {e′} is a tree.
Since e, e′ belong to the same cycle C deleting e′ from T ′ ∪ {e} leaves it connected:

instead of e′ we can use ui · · ·unu0 · · ·ui−1 in a path that contains e′. Hence T ′∪{e}\{e′}
is a connected graph with |V (G)| − 1 = |V (T ′)| − 1 edges, so it is a tree. □

Problem 6 Let V1, V2, and V3 be three mutually disjoint nonempty sets satisfying
|V1| = |V2| = |V3| = n, and let G be a simple graph with V (G) = V1 ∪ V2 ∪ V3. Assume
that every v ∈ Vi is adjacent to exactly n+ 1 vertices in V (G) \ Vi (v may also be ad-
jacent to some vertices in Vi) for every i ∈ [3]. Prove that there exist v1, v2, v3 ∈ V (G)
with vi ∈ Vi for every i ∈ [3] such that v1v2v3 is a cycle in G.

Solution. For 1 ≤ i, j ≤ 3, i ̸= j, v ∈ Vi we denote by dj(v) the number of neighbors
of v in Vj.

Consider numbers dj(v) for all triples i, j, v, let k be their maximum. Without loss
of generality we may assume that k = d2(v), where v ∈ V1.

We have d2(v) + d3(v) = n + 1 and d2(v) ≤ |V2| = n. Hence d3(v) ≥ 1. So there
exists a vertex w ∈ V3 connected to v. In the case when d2(w) + d2(v) > n we can find
a common neighbor u of v, w by pigeonhole principle. Hence uvw is a cycle.

So we assume that d2(w) + d2(v) ≤ n. Since d2(w) + d1(w) = n + 1 we get
d1(w) = n+1− d2(w) ≥ 1+ d2(v) ≥ k+1, a contradiction with the definition of k. □

Problem 7 Let G be a simple graph in which every vertex has degree 3. Prove that G
has a perfect matching if and only if G can be decomposed into paths of length 3 each.

Solution. Suppose that G can be decomposed into paths of length 3 each. We take
middle edge from each path.

We claim that middle edges form different paths do not have a vertex in common.
Assume that this is not the case.let e1 and e2 be middle edges of paths P1 and P2

that have vertex v in common. Then the degree of v is at least 4: there are two edges
incident to v in P1 and two edges incident to v in P2. This contradiction proves the
claim.

Since different edges do not have common vertices we obtain a matching. Let n be
the number of vertices in G. Then there are 3n

2
edges in G. It follows that there are n

2

paths of length 3. Hence there are n
2
middle edges, so this matching in perfect.



Combinatorial Analysis (MIT Fall 2021) Instructor: Felix Gotti

Suppose that G has a perfect matching M . Then in graph G \ M the degree of
each vertex is two. Hence G \M is a union of cycles. For each vertex we will choose
an edge incident to it as follows. Write each cycle C as C = v0 · · · vn and choose for
vertex vi edge vivi+1. We note that to different vertices correspond different edges.

We construct paths of length 3 as follows. Let e = uv be an element of M . To
u, v correspond edges eu, ev in G \ M . Edges eu, e, ev form a path of length 3. Since
to each vertex corresponds its own edge these paths do not intersect. There are n

2
of

these paths, hence E(G) is a union of these paths. □

Problem 8 Let k, n ∈ N such that k < n/2. Let G be a bipartite graph with parts V
and W satisfying the following condition:

• V is the set of k-subsets of [n] and W is the set of (k + 1)-subsets of [n], and

• there is an edge between S ∈ V and T ∈ W if and only if S ⊆ T .

Prove that V has a perfect matching into W

1. (0.5 pts) by using Hall’s theorem, and

2. (0.5 pts) by explicitly finding a perfect matching.

Solution.

1. We note that the degree of each S ∈ V equals to n − k and the degree of each
T ∈ W equals to k + 1. Let A be a subset of V , N(A) its neighborhood. There
are (n− k)|A| edges going from A and (k+1)|N(A)| going from N(A). Since all
edges from A go to N(A) we have (n − k)|A| ≤ (k + 1)|N(A)|. From k < n

2
we

deduce that (k + 1) ≤ n− k. Hence (k + 1)|N(A)| ≤ (n− k)||N(A)|. It follows
that (n−k)|A| ≤ (n−k)|N(A)|, so |A| ≤ |N(A)|. Since this holds for any subset
A of V the conditions of Hall’s theorem are satisfied and there exists a perfect
matching from V to W .

2. We will modify the construction given in the StackExchange forum:

https://math.stackexchange.com/questions/126065/

for-kn-2-construct-a-bijection-f-from-k-subsets-of-n-to-n-k-subse

https://math.stackexchange.com/questions/126065/for-kn-2-construct-a-bijection-f-from-k-subsets-of-n-to-n-k-subse
https://math.stackexchange.com/questions/126065/for-kn-2-construct-a-bijection-f-from-k-subsets-of-n-to-n-k-subse
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We construct a sequence of parentheses from a set S as follows: the i-th paren-
thesis is opening if i does not belong to S and closing if i belongs to S. Condition
on k implies that there are more opening parentheses than closing. We match
parentheses as follows: we go from right to left and match each closing parenthesis
to the nearest non-matched opening parenthesis to the left if such exists.

In this way some parentheses will be matched and some will be unmatched. All
unmatched open parentheses are to the right of unmatched close parentheses or
some of them would be matched. We take leftmost unmatched open parenthesis
and change it to close parenthesis. Then we convert it to the set T . We have
S ⊂ T by construction.

It remains to prove that for S1 ̸= S2 we have T1 ̸= T2. Suppose that there
exist S1 ̸= S2 such that T1 = T2 = T . By construction S1 and S2 differ in
two elements i, j. We may assume that i < j. On the level of parentheses one
of S1, S2 looks like · · · (· · · ) · · · , the other looks like · · · ) · · · (· · · . And T look
like · · · ) · · · ) · · · . Without loss of generality let S1 = · · · ) · · · (· · · . Since j-th
parenthesis was changed it was the leftmost unmatched opening parenthesis. It
follows that all opening parentheses on places 1, . . . , j− 1 are matched to closing
parentheses.

Consider S2 = · · · (· · · ) · · · . Start matching parentheses. Going from the right-
most parenthesis to the j + 1-th parenthesis gives the same set of unmatched
parentheses as in S1 and two options for matched parentheses: either they are
the same as in S1 or they contain i-th parenthesis. In the second case i-th paren-
thesis is matched, hence S2 does not correspond to T . So we assume that we
have the same set of matched opening parentheses as in S1.

Since all opening parentheses on places i + 1, . . . , j − 1 were matched to closing
parentheses in S1 the number of closing parentheses in {i+1, . . . , j−1} is greater
or equal than the number of yet-unmatched opening parentheses in {i+1, . . . , j−
1}. Hence in S2 there are more closing parentheses in {i + 1, . . . , j} than yet-
unmatched opening parentheses. Therefore the parenthesis on place i will be
matched to some closing parenthesis by construction. Hence i-th parenthesis
cannot be the leftmost unmatched parenthesis, so T does not correspond to S2,
a contradiction.

□


